深層学習に用いる乱数生成器が不要な処理層を備えたニューラルネットワークのハードウェア実装の方法であって、
最下流の前記処理層を除いた任意の処理層Aを形成する複数のユニットAのそれぞれの発火又は非発火の状態を示す状態値Aが、該処理層Aと隣り合う下流側の処理層Bを形成する複数のユニットBにそれぞれ伝達されて決まる該ユニットB毎の状態値Bを固定小数点2進数による演算で求め、該状態値Bを変数とする発火確率関数を用いて前記ユニットB毎の発火確率P(B)を求めて発火又は非発火の状態を決定して出力する演算回路部を設け、前記演算回路部には、前記状態値Bを求める際に前記固定小数点2進数のビット幅を超過して切り捨てられるビットを用いて形成する数値を乱数として用いて、前記ユニットB毎の発火確率P(B)から該ユニットBの発火又は非発火の状態を決定するユニット状態演算器を設けることを特徴とする乱数生成器が不要なニューラルネットワークのハードウェア実装の方法。